Estimating and Analyzing Savannah Phenology with a Lagged Time Series Model
نویسندگان
چکیده
Savannah regions are predicted to undergo changes in precipitation patterns according to current climate change projections. This change will affect leaf phenology, which controls net primary productivity. It is of importance to study this since savannahs play an important role in the global carbon cycle due to their areal coverage and can have an effect on the food security in regions that depend on subsistence farming. In this study we investigate how soil moisture, mean annual precipitation, and day length control savannah phenology by developing a lagged time series model. The model uses climate data for 15 flux tower sites across four continents, and normalized difference vegetation index from satellite to optimize a statistical phenological model. We show that all three variables can be used to estimate savannah phenology on a global scale. However, it was not possible to create a simplified savannah model that works equally well for all sites on the global scale without inclusion of more site specific parameters. The simplified model showed no bias towards tree cover or between continents and resulted in a cross-validated r2 of 0.6 and root mean squared error of 0.1. We therefore expect similar average results when applying the model to other savannah areas and further expect that it could be used to estimate the productivity of savannah regions.
منابع مشابه
A NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES
In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...
متن کاملNon-destructive Method for Estimating Biomass of Plants Using Digital Camera Images
Abstract Plant growth and biomass assessments are required in production and research. Such assessments are followed by major decisions (e.g., harvest timing) that channel resources and influence outcomes. In research, resources required to assess crop status affect other aspects of experimentation and, therefore, discovery. Destructive harvests are important because they influence treatment s...
متن کاملEvaluation of Univariate, Multivariate and Combined Time Series Model to Prediction and Estimation the Mean Annual Sediment (Case Study: Sistan River)
Erosion, sediment transport and sediment estimate phenomenon with their damage in rivers is a one of the most importance point in river engineering. Correctly modeling and prediction of this parameter with involving the river flow discharge can be most useful in life of hydraulic structures and drainage networks. In fact, using the multivariate models and involving the effective other parameter...
متن کاملFive-Year Epidemiological Study and Estimation of Accidents Distribution in Construction Industry Workers in Yazd City by the Year 2011 by Applying Time Series Model
Background & Aims: Occupational accidents are known as one of the most important causes of disabilities and mortality in developed and developing countries. Construction industry is one of the most high risk occupations which its hazardous are not known completely. In addition to occupational accidents, construction workers are faced many diseases factors such as asbestos, silicon, fumes and no...
متن کاملAnalysis of the effect of drought on the phenology parameters of vegetation indexes from the time series of MODIS sensor images (case study: Hamadan province)
Drought is one of the consequences of climate change that slowly and over a relatively long period of time affects climate, environment, agriculture, vegetation, water resources and even economic and social sectors. The serious outcome of drought is the reduction of vegetation cover. In this research, using MODIS sensor satellite images of 2001-2020 (20-year period) and CHIRPS monthly rainfall ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016